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Abstract
On the basis of a tight-binding model, we study numerically the effect of Rashba spin–orbit
coupling on the quantum Hall effect in graphene. It is found that the spin–orbit coupling can
open a gap in the energy spectrum of the counterpropagating edge states in the ν = 0 plateau
region, while the edge states in other plateau regions remain gapless. In the presence of
disorder, the energy spectrum in the ν = 0 plateau region shows the feature of level repulsion,
an indication of switching on of backward scattering and localization of the edge states. This
result may explain the insulator-like behavior near the Dirac points observed in experiments at
low temperatures.

(Some figures in this article are in colour only in the electronic version)

Recently, the novel transport properties of the Dirac-like
electrons in graphene, a single-atom-thick film of carbon
atoms densely packed in a honeycomb lattice, have become
the major focus of many research activities, since this new
two-dimensional material was successfully fabricated [1, 2].
Graphene is promising for electronic device applications
because of the high mobility, easy control of carrier densities,
and many other attractive characteristics. The anomalous
quantum Hall effect (QHE) is one of the exotic transport
properties of graphene subjected to intensive experimental and
theoretical study [3–17].

In a relatively weak magnetic field, where the Zeeman
splitting is negligible, the Hall conductivity of graphene takes
the form σxy = ν e2

h̄ with ν = (k + 1
2 )gs = ±2,±6, . . .,

where k is an integer, and gs = 4 accounts for the
spin and sublattice-related Dirac valley degeneracies of the
Landau levels. This interesting ‘half-integer’ quantization
rule was observed experimentally [3, 4], and explained
theoretically [5–9] as resulting from the Berry phase anomaly
at the Dirac points [18]. In a strong magnetic field, where the
Zeeman splitting is strong enough to lift the spin degeneracy,
all even-integer ν = 2k Hall plateaus become possible
in principle, as illustrated in figures 1(a)–(c). In recent
experiments, by using ultra-high magnetic fields [10], the
additional Hall plateaus ν = ±4 caused by the Zeeman
splitting were observed. Interestingly, extra odd-integer ν =

±1 Hall plateaus also appeared in the experiments [10], which
have been attributed to spontaneous valley symmetry breaking
driven by the electron–electron interaction [11–17].

If the two spin degrees of freedom are decoupled, a ν = 0
plateau will appear near the Dirac points. This plateau state is
topologically distinct from an ordinary insulator state, as it is a
superposition of the ν = 1 plateau state of the spin-up electrons
and the ν = −1 plateau state of the spin-down electrons,
as seen from figures 1(a)–(c). Correspondingly, for a sample
with an open boundary, there are two gapless conducting edge
modes with opposite spin polarizations in the ν = 0 bulk
gap, counterpropagating on each edge of the sample [19], as
sketched in figure 1(d). For comparison, the edge states in
the ν = 2 and 4 bulk gaps are shown in figures 1(e) and (f),
where the edge states for different spins are moving in the
same direction on each edge. When the electron Fermi energy
lies in the ν = 0 bulk gap, the system is expected to show
hallmarks of the standard QHE. On the experimental side,
however, the Hall effect near the Dirac points are found to be
quite unusual. Abanin et al [20] observed that the longitudinal
resistivity ρxx shows a pronounced peak near ν = 0 with
magnitude ρxx � h/e2 at temperature T = 4 K, in contrast to
the standard QHE, where the longitudinal resistivity tends to
zero. Phenomenologically, they attributed the large resistivity
to dissipative transport of the edge states [20]. Checkelsky,
Li and Ong [21] observed that the longitudinal resistivity near
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Figure 1. Illustration of QHE and edge states. (a) Hall conductivity
for spin-up electrons, (b) Hall conductivity for spin-down electrons,
and (c) total Hall conductivity. The Hall plateaus of the opposite
spins are shifted relatively due to Zeeman splitting. (d)–(f) Edge
states with spin-up (blue lines) and spin-down (red lines)
polarizations in the ν = 0, 2 and 4 bulk energy gaps, respectively,
where arrows indicate the moving directions of the edge states.

ν = 0 displays a strong divergent trend, by decreasing the
temperature down to 0.3 K. These controversies stress the
importance of further studying theoretically the unusual nature
of the ν = 0 Hall effect, especially its characteristics in the
presence of small perturbation of the spin mixing and disorder
scattering.

In this paper, we show that the spin-flip effect can
inherently destabilize the edge states in the ν = 0 bulk
energy gap, leading to insulating behavior near ν = 0. While
the spin-flip scattering in graphene is relatively weak, it is
still an observable effect, as suggested by the spin precession
experiment [22]. We study numerically the effect of Rashba
spin–orbit coupling, as an exemplary spin-flip perturbation,
on the QHE in graphene. It is found that the spin–orbit
coupling can open a gap in the energy spectrum of the
counterpropagating edge states in the ν = 0 bulk gap, while
the parallel-moving edge states in other plateau regions remain
gapless. In the presence of disorder, the edge-state spectrum in
the ν = 0 bulk gap exhibits level repulsion behavior, indicating
the switching on of backward scattering and localization of
the edge states. This finding may explain the insulator-like
behavior near the Dirac points observed in experiments.

We consider a rectangular graphene sample with two
armchair edges and two zigzag edges. The y-axis is chosen
to be parallel to the armchair edges and the x-axis parallel to
the zigzag edges. The sample size is denoted by Lx × L y ,
where L y is the number of zigzag chains, and Lx is the number
of atoms on each zigzag chain. A magnetic field is applied
perpendicular to the graphene plane. The tight-binding model
Hamiltonian for the system is written as

H = −t
∑

〈i j〉
eiϕi j c†

i c j − g

2

∑

i

c†
i σzci

+ iVR

∑

〈i j〉
c†

i êz · (σ × di j )c j +
∑

i

wi c
†
i ci , (1)

where c†
i = (c†

i↑, c†
i↓) are the electron creation operators, and

σ are the Pauli matrices. The first term is the nearest-neighbor
hopping term with ϕi j a phase factor acquired by an electron
moving in the magnetic field.

∑
ϕi j = 2π

M is the magnetic
flux per hexagon in units of the flux quantum φ0 = hc

2e with
M as an integer. The second term stands for the Zeeman
coupling, where g is the Zeeman splitting between the opposite
spins. The third term is the Rashba spin–orbit coupling,
where êz is a unit vector along the z direction (vertical to the
graphene plane), and di j is a vector pointing from site j to i .
For graphene, the spin–orbit coupling can originate from the
undulating surface as well as the gate electric voltage [23], the
former effect dominating at small gate voltages. The last term
is the on-site random potential accounting for nonmagnetic
disorder, where wi is assumed to be uniformly distributed in
the range wi ∈ [−W/2, W/2].

The Hamiltonian equation (1) is solved numerically by
the exact diagonalization method with a periodic boundary
condition �(Ri + 3L ya0êy/2) = �(Ri) in the y direction,
and an open boundary condition in the x direction, where
�(Ri) represents the electron wavefunction at the i th site
with coordinates Ri . A Landau gauge that preserves the
translational symmetry in the y direction is adopted, such that
the longitudinal momentum qy (in h̄ = 1 units) can be used
as a good quantum number. The calculated energy spectra for
sample size 128 × 2000 in three different energy regions are
shown in figures 2(a)–(c). In the ν = 4 Hall plateau region
shown in figure 2(a), the two straight horizontal lines are two
Landau levels, and the curved lines running up and down are
the edge states propagating on the two edges of the graphene
strip. There are in total eight edge-state lines connecting up
the two Landau levels (noting that 3qya0 = 0 and 2π are
equivalent), yielding eight edge modes, four on either edge of
the graphene strip, as illustrated in figure 1(f). We can see that
the edge states in the ν = 4 plateau region remain gapless,
even though the spin–orbit coupling is nonzero. In the ν = 2
plateau region shown in figure 2(b), the edge states are found
to be gapless as well. In the ν = 0 plateau region, however,
a small energy gap 	 opens up at zero energy, as shown in
figure 2(c). Such an energy gap is caused by the nonvanishing
spin–orbit coupling, which does not exist if VR is taken to be
zero (see the red lines in the inset of figure 2(c)).

In figure 3(a), the energy gap 	 as a function of the
normalized Rashba spin–orbit coupling strength VR/t for
different values of Zeeman energy is plotted, where M = 32
and the sample size is set to 256 × 2000. The energy gap
increases with VR, roughly in linear proportion for small VR.
With increasing Zeeman energy g, the energy gap increases as
well. In figure 3(b), the energy gap 	 is plotted as a function
of the strip width Lx for two different values of g, where 	

is seen to be almost independent of Lx . Figure 3(c) illustrates
the magnetic field dependence of 	. With increasing M (1/M
being proportional to the applied magnetic field), 	 decreases
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Figure 2. Energy spectrum around the (a) ν = 4, (b) ν = 2 and
(c) ν = 0 bulk gaps for a clean sample (W = 0) of size 128 × 2000
with a0 as the side of the hexagon. Here, the Rashba spin–orbit
coupling strength is VR = 0.01t , the magnetic flux parameter
M = 32, and the Zeeman coupling g = 0.1t . The inset in (c) is an
enlargement of the energy spectrum around the edge-state energy
gap, where thin red lines are the energy spectrum in the absence of
spin–orbit coupling (VR = 0).

slowly. From these results, it follows that the energy gap
remains finite no matter whether the strip width becomes very
large or the magnetic field tends to be very small. It vanishes
only when the Rashba spin–orbit coupling goes to zero.

We further consider the disorder effect on the energy
spectrum. The graphene strip under consideration with a
periodic boundary condition in the y direction may also
be equivalently regarded as a cylinder. A Laughlin gauge
experiment [24, 25] can be performed by adiabatically
threading a magnetic flux through the cylinder. The magnetic
flux in units of the magnetic flux quantum φ0 is denoted
as θy . In the calculation, the effect of the inserted flux
can be easily taken into account by replacing the periodic
boundary condition in the y direction with a twisted boundary
condition [25] �(Ri + 3L ya0êy/2) = eiθy �(Ri). The
calculated electron eigenenergies as functions of θy for a
sample of size 64 × 128 in two different regions are shown
in figure 4, where for clarity only the edge states on one edge
are plotted. Inside the ν = 0 bulk gap in figure 4(a), in

Figure 3. The edge-state energy gap 	 as functions of (a) strength of
the Rashba spin–orbit coupling VR, (b) sample width Lx , and
(c) strength of the magnetic flux 1/M . In (a) and (b), the magnetic
flux is fixed at M = 32.

the absence of spin–orbit coupling and disorder, the energy
levels cross each other, and evolve into different states after
a 2π flux is inserted (thin red lines), suggesting that the edge
states are conductive. However, when the spin–orbit coupling
and disorder scattering are turned on, the energy levels avoid
crossing each other (thick blue lines), and return to their
original states after a 2π flux is inserted. This level repulsion
behavior signals the occurrence of backward scattering and
localization of the edge states. It always happens regardless
of the disorder strength. On the other hand, inside the ν = 2
plateau region, the energy levels always evolve into different
states after a 2π flux is inserted even in the presence of spin–
orbit coupling and disorder scattering, as shown in figure 4(b),
so the electrons can be continuously pumped from one edge
to the other, resulting in the QHE, according to the Laughlin’s
argument [24].

Our numerical results indicate that the edge states in the
ν = 0 plateau region are sensitive to the spin-mixing effect
caused by the spin–orbit coupling, in contrast to those in
other Hall plateau regions, which are robust against this kind
of perturbation. In the presence of disorder, the edge states
are Anderson localized, and the system enters a topologically
trivial insulating phase, if the electron Fermi energy lies in the
ν = 0 bulk gap. For sufficiently pure samples, the localization
length of the edge states may be mainly controlled by the spin–
orbit coupling [20]. Here, we consider the spin–orbit coupling
as originating from the ripples [23]. For typical ripples
observed, the Rashba spin–orbit coupling is estimated to be of
the order of 0.2 K [23]. Therefore, insulator-like behavior, such
as diverging resistivity, should be observable at sufficiently
low temperatures, which may explain the divergent trend of
the longitudinal resistivity observed at very low temperatures
around 0.3 K [21]. On the other hand, due to the smallness
of the energy gap in the edge-state spectrum, at relatively high
temperatures, dissipative transport through the edge states may
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Figure 4. Eigenenergies of the edge states in the (a) ν = 0 and
(b) ν = 2 bulk gaps in a sample of size 64 × 128 for VR = W = 0
(thin red lines) and VR = W = 0.01t (thick blue lines). The other
parameters are taken to be M = 32 and g = 0.1t , and the disorder
configuration is randomly chosen.

become possible, which can greatly reduce the longitudinal
resistivity [20].

We wish to point out that the spin–orbit coupling is not
the only possible origin of the insulating behavior near ν = 0.
For instance, magnetic impurities can also lead to the same
behavior. In the present non-interacting model, the Landau
level occupation is dominated by the Zeeman coupling. In
realistic systems, interactions could potentially modify the
ν = 0 ground state, and favor a spin-unpolarized state. In
this general case, numerical study would become very difficult
and will be left to future works. However, we believe that
our conclusion will not change qualitatively, since any spin-flip
effect will generally couple the counterpropagating edge states,
leading to backward scattering of electrons and thus insulating
transport behavior near ν = 0. In this paper, we have confined
ourselves to the weak disorder regime. In experiments [21, 26],
it is shown that a relatively strong magnetic field is needed in
order to observe the insulating behavior around ν = 0. This
may be due to relatively strong disorder in the experimental
samples, which causes broadening of the Landau levels. As
a result, a strong magnetic field is needed to provide good
separation of the neighboring Landau levels around ν = 0 and
for observing the insulating behavior. However, disorder alone
does not explain the insulating behavior, since without spin
mixing, the edge states for a given spin are chiral and cannot be
localized. We expect that, for samples with higher mobilities,
the insulating behavior around ν = 0 will appear at weaker
magnetic fields.

In summary, we have numerically investigated the edge-
state spectrum of graphene in the presence of spin–orbit
coupling and disorder. It is found that the energy spectrum of
the edge states in the ν = 0 plateau region opens a small gap
and shows the feature of level repulsion, indicating a transition
into a topologically trivial insulator phase, while the edge states
in other plateau regions remain robust and gapless. This finding
may explain the experimental observation of a divergent trend

of the longitudinal resistivity at low temperatures near the
Dirac points.
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